基于Nvidia GPU和Docker容器的深度学习环境搭建
GPU云主机:
操作系统:Ubuntu 16.04 64位
GPU: 1 x Nvidia Tesla P40
1. 安装CUDA Driver
1.1 Pre-installation Actions
安装gcc、g++、make:
# sudo apt-get install gcc g++ make
# gcc --version
gcc (Ubuntu 5.4.0-6ubuntu1~16.04.10) 5.4.0 20160609
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
如果没有,需安装linux-headers:
# sudo apt-get install linux-headers-$(uname -r)
1.2 安装NVIDIA driver
CUDA安装有两种方式:
1.Package安装
2.Runfile安装
本文选择runfile安装方式。
首先禁用Nouveau:
# lsmod | grep nouveau
nouveau 1495040 0
mxm_wmi16384 1 nouveau
wmi20480 2 mxm_wmi,nouveau
video 40960 1 nouveau
i2c_algo_bit 16384 1 nouveau
ttm94208 1 nouveau
drm_kms_helper155648 1 nouveau
drm 364544 3 ttm,drm_kms_helper,nouveau
# vi /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
# sudo update-initramfs -u
update-initramfs: Generating /boot/initrd.img-4.4.0-62-generic
W: mdadm: /etc/mdadm/mdadm.conf defines no arrays.
Reboot云主机:
# reboot
重启后check下Nouveau drivers没有被load:
# lsmod | grep nouveau
#
登录:http://developer.nvidia.com/c... 下载相应的runfile:
# wget https://developer.nvidia.com/compute/cuda/10.0/Prod/local_installers/cuda_10.0.130_410.48_linux
开始安装CUDA Driver:
# chmod +x cuda_10.0.130_410.48_linux
# sudo sh ./cuda_10.0.130_410.48_linux
Logging to /tmp/cuda_install_1699.log
Using more to view the EULA.
Do you accept the previously read EULA?
accept/decline/quit: accept
Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 410.48?
(y)es/(n)o/(q)uit: y
Do you want to install the OpenGL libraries?
(y)es/(n)o/(q)uit [ default is yes ]: y
Do you want to run nvidia-xconfig?
This will update the system X configuration file so that the NVIDIA X driver
is used. The pre-existing X configuration file will be backed up.
This option should not be used on systems that require a custom
X configuration, such as systems with multiple GPU vendors.
(y)es/(n)o/(q)uit [ default is no ]:
Install the CUDA 10.0 Toolkit?
(y)es/(n)o/(q)uit: y
Enter Toolkit Location
[ default is /usr/local/cuda-10.0 ]:
Do you want to install a symbolic link at /usr/local/cuda?
(y)es/(n)o/(q)uit: y
Install the CUDA 10.0 Samples?
(y)es/(n)o/(q)uit: y
Enter CUDA Samples Location
[ default is /root ]:
Installing the NVIDIA display driver...
Installing the CUDA Toolkit in /usr/local/cuda-10.0 ...
Missing recommended library: libGLU.so
Missing recommended library: libX11.so
Missing recommended library: libXi.so
Missing recommended library: libXmu.so
Installing the CUDA Samples in /root ...
Copying samples to /root/NVIDIA_CUDA-10.0_Samples now...
Finished copying samples.
===========
= Summary =
===========
Driver: Installed
Toolkit: Installed in /usr/local/cuda-10.0
Samples: Installed in /root, but missing recommended libraries
Please make sure that
- PATH includes /usr/local/cuda-10.0/bin
- LD_LIBRARY_PATH includes /usr/local/cuda-10.0/lib64, or, add /usr/local/cuda-10.0/lib64 to /etc/ld.so.conf and run ldconfig as root
To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-10.0/bin
To uninstall the NVIDIA Driver, run nvidia-uninstall
Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-10.0/doc/pdf for detailed information on setting up CUDA.
Logfile is /tmp/cuda_install_1699.log
安装成功!
Reboot云主机:
# reboot
设备验证:
# ls /dev/nvidia*
ls: cannot access '/dev/nvidia*': No such file or directory
# vi nvidia-probe.sh
#!/bin/bash
### BEGIN INIT INFO
# Provides: jd.com
# Required-Start: $local_fs $network
# Required-Stop: $local_fs
# Default-Start: 2 3 4 5
# Default-Stop: 0 1 6
# Short-Description: nvidia service
# Description: nvidia service daemon
### END INIT INFO
/sbin/modprobe nvidia
if [ "$?" -eq 0 ]; then
# Count the number of NVIDIA controllers found.
NVDEVS=`lspci | grep -i NVIDIA`
N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l`
NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l`
N=`expr $N3D + $NVGA - 1`
for i in `seq 0 $N`; do
mknod -m 666 /dev/nvidia$i c 195 $i
done
mknod -m 666 /dev/nvidiactl c 195 255
else
exit 1
fi
/sbin/modprobe nvidia-uvm
if [ "$?" -eq 0 ]; then
# Find out the major device number used by the nvidia-uvm driver
D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`
mknod -m 666 /dev/nvidia-uvm c $D 0
else
exit 1
fi
# chmod +x nvidia-probe.sh
# ./nvidia-probe.sh
# ls /dev/nvidia*
/dev/nvidia0 /dev/nvidiactl /dev/nvidia-uvm
/dev下成功发现设备!
配置开机自启动:
# cp nvidia-probe.sh /etc/init.d/
# sudo update-rc.d nvidia-probe.sh defaults 95
1.3 Post-installation Actions
配置环境变量:
# vi /etc/profile
......
export PATH=/usr/local/cuda-10.0/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
开机启动Persistence Daemon:
# vi /etc/rc.local
......
/usr/bin/nvidia-persistenced --verbose
exit 0
1.4 CUDA driver验证
查看Driver Version:
# cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module 410.48 Thu Sep 6 06:36:33 CDT 2018
GCC version: gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10)
使用deviceQuery示例验证:
# cd ~/NVIDIA_CUDA-10.0_Samples/1_Utilities/deviceQuery/
# make
"/usr/local/cuda-10.0"/bin/nvcc -ccbin g++ -I../../common/inc -m64-gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery.o -c deviceQuery.cpp
"/usr/local/cuda-10.0"/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_61,code=sm_61 -gencode arch=compute_70,code=sm_70 -gencode arch=compute_75,code=sm_75 -gencode arch=compute_75,code=compute_75 -o deviceQuery deviceQuery.o
mkdir -p ../../bin/x86_64/linux/release
cp deviceQuery ../../bin/x86_64/linux/release
# cd ../../bin/x86_64/linux/release/
# ls
deviceQuery
# ./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "Tesla P40"
CUDA Driver Version / Runtime Version 10.0 / 10.0
CUDA Capability Major/Minor version number:6.1
Total amount of global memory: 22919 MBytes (24032378880 bytes)
(30) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores
GPU Max Clock rate:1531 MHz (1.53 GHz)
Memory Clock rate: 3615 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 3145728 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size(x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory:No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces:Yes
Device has ECC support:Enabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption:Yes
Supports Cooperative Kernel Launch:Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 7
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 1
Result = PASS
参考:
https://github.com/NVIDIA/nvi...
2. 安装Nvidia-docker
2.1 安装Docker
安装docker-ce:
#sudo apt-get remove docker docker-engine docker.io
# sudo apt-get install \
apt-transport-https \
ca-certificates \
curl \
software-properties-common
# curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
# sudo add-apt-repository \
"deb [arch=amd64] https://download.docker.com/linux/ubuntu \
$(lsb_release -cs) \
stable"
# sudo apt-get update
# sudo apt-get install docker-ce
# docker version
Client:
Version: 18.06.1-ce
API version: 1.38
Go version:go1.10.3
Git commit:e68fc7a
Built: Tue Aug 21 17:24:56 2018
OS/Arch: linux/amd64
Experimental: false
Server:
Engine:
Version: 18.06.1-ce
API version: 1.38 (minimum version 1.12)
Go version: go1.10.3
Git commit: e68fc7a
Built:Tue Aug 21 17:23:21 2018
OS/Arch: linux/amd64
Experimental: false
2.2 安装nvidia-docker
安装nvidia-docker:
# Add the package repositories
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | \
sudo apt-key add -
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | \
sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
# Install nvidia-docker2 and reload the Docker daemon configuration
sudo apt-get install -y nvidia-docker2
sudo pkill -SIGHUP dockerd
验证nvidia-docker:
# docker run --runtime=nvidia --rm nvidia/cuda:9.0-base nvidia-smi
Thu Oct 25 09:03:27 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.48 Driver Version: 410.48|
|-------------------------------+----------------------+----------------------+
| GPU NamePersistence-M| Bus-IdDisp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P40 On | 00000000:00:07.0 Off |0 |
| N/A 20CP8 9W / 250W | 0MiB / 22919MiB | 1% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
2.3 配置Docker默认runtime
cat /etc/docker/daemon.json
{
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "nvidia-container-runtime",
"runtimeArgs": []
}
}
}
重启服务:
# systemctl restart docker
# systemctl status docker
2.4 运行TensorFlow卷积神经Model
Docker运行:
# docker run --rm --name tensorflow -ti tensorflow/tensorflow:r0.9-devel-gpu
root@bd0fb3758da2:~# python --version
Python 2.7.6
root@bd0fb3758da2:~# python -m tensorflow.models.image.mnist.convolutional
参考:
https://docs.docker.com/insta...
**粗体** _斜体_ [链接](http://example.com) `代码` - 列表 > 引用
。你还可以使用@
来通知其他用户。